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LETTER TO THE EDITOR

Integral representation for the eigenstates
of the spin system with inverse square interactions

Kazuhiro Hikamit
Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku,
Tokyo 113, Japan

Received 7 June 1994

Abstract, We consider the Calogero—Sutherland-Moser system with spin —%. We give the
integral representation for the ground state wavefunction. Excited states of the Calogero spin
model confined in the harmonic potential are also given.

The one-dimensional quantum many-body system with inverse square interactions has been
extensively studied. Such a system is called the Calogero—Sutherland-Moser (CSM) system
[1-3], whose Hamiltonian is
N 62
H==Y —+28 Y Vig—x). )
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We call such systems the (i) Calogero model, V{(x) = x~2, and (ii) Sutherland model,
V(x) = sinh™2 x. One of the interesting properties of this system is that the eigenstates are
the Jastrow-type wavefunction and that the particles have fractional statistics [4].

Since the independent works of Haldane {5] and Shastry [6] the spin system with inverse
square exchange, which is the Haldane—Shastry model, has attracted much attention. The
Hamiltonian is given by

P.
Hus = d . 2
s Z,; sin?(z /L)(x, — 1) @

This model can be viewed as the generalization of the usual Heisenberg spin chain, but
#te structure stiil remains unclear. n this ietter we coasider spin generalization of the
Calogero—Sutherland-Moser model [7-11],
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and give the integral representation for the ground state wavefunction. Systems (3) and (4)
are called the Calogero and the Sutherland spin models, respectively. We also consider the
Calogero spin system confined in the harmonic potential,

N
How=He+ Y w’xl. )
i

In these Hamiltonians P, denotes the permutation operator in spin space of the jth and kth
particles, Pla) ® [8) = {8} ® [er}. Generally the su(v) spin case is integrable, but we only
consider the su(2) spin—% case for brevity. In this case the permutation operator P can be
written as
P=locoo+1)
=0t Q@0 "+ @ct + 30" Q0%+ 5. (6}

Here we have used the Pauli spin matrices o,

«_[ 01 y_f 0 —i :_f{1 0
"‘(10 TELioo R
and the creation—annihilation operators
ot = {(o* +io?) o™ = (> —io").

Recent studies have shown that the system with inverse square interactions is closely
related with the classical Yang-Baxter equation. The classical Yang-Baxter equation is the
functional equation,

[X2@), P+ 0]+ [X%0), XPO)] + [XP@+ 0. X20)] =0 )

where XY signifies the matrix on V @ V ® V, acting as X on the ith and jth spaces.
Parameters # and v are the spectral parameters. It is known that the solutions of the classical
Yang-Baxter equation (7) are classified into three cases: rational, trigonometric and elliptic
solutions [11]. Two-dimensional representations of the solutions are the following:
(i) rational

Xu) = z

u

{ii) trigonometric

Xw)y=coth(z) P+r.

Here we have introduced the operator r as
r=ct®c -0 ®c".

Corresponding to the solution of the classical Yang-Baxter equation (7), we can
introduce several quantum ‘integrable’ systems. First example is the Gaudin magnet {12~
16}, which is the classical limit of the inhomogeneous spin chain. The Hamiltonian has the
form

N
My = X*(x; —xi) (8)
ke
where the function X{x) is the solution of the classical Yang-Baxter equation (7). The
integrabiiity of this mode! is supported by the consistency condition

M, H,1=0 LhE=1,2,...,N. %)
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This model is exactly solved in terms of the Bethe ansatz method.
The other integrable system is the following linear differential equations:

Viv(z}) =0 J=12,...,N (10)
where the differential operators V; are defined by
vj=%—xZXf"(zj—zk). (1)
A=Y
The parameter « is an arbitrary constant. The integrability condition of (10),
V), V] =0 k=1, N (12)

is satisfied if X/*(x) is an odd function of «, and satisfies the classical Yang-Baxter
equation (7). From now on we shall call the system of the differential equations (10} the
generalized Knizhnik—Zamoledchikov (K2) equation. For the rational solution X (u) = P/u,
we have the ‘original’ Kz equation [17] for the N-points correlation functions of the
Wess—Zumino—Witten model. Particulary, we call (10} with X (#) = coth(u} P + r as
the trigonometric KZ equation.

The relation of the KZ equation and the €SM model (1) is revealed in [7, 18, 19]. The
so'utions of the €SM model is given by a ‘Cherednik~Matsuo’ map. For the case of the
CSM spin system, the eigenstates can be derived from the KZ equation as follows. By use
of the trigonometric KZ operator

k]
Vj=— —k Y (coth(z; — z¢) Pk + ) (13)
dz; ey
the Sutherland-type spin system (4) is constructed as

Hs=3 VIV, ——:cz(%N(Zo-j‘)z-}-%N(Nz—éL)). (14
i i

Then one knows that the solution of the trigonometric KZ equation (10) is also the eigenstate

of the Sutherland-type spin system.
In the same way the Calogero spin system confined in the harmonic potential (5) can
be obtained by use of the following KZ operator:

- P
Vj'—i_fc Bt owx;. (15)
ox; Pyl R’
The Hamiltonian (3) is written as
=YY, ke z
ﬁm_Zvjvj+mN+T(N(N—4)+(Zaj) ) (16)

Note that the the energy depends on the total spin J = Z o; wh1le the Sutherland-type
system (14) depends only on its z-component J* = }; oF

Now to obtain the eigenstates of the system let us study the solution of the KZ equation.
In general the solutions can be written in terms of the Aomoto—Gelfand-Selberg-type
hypergeometric integral [20-25]. The same integral representations can be given by the
method of the Wakimoto construction [26], and the ‘off-sheli Bethe ansatz’ method [27-29].
In the method of the off-shell Bethe ansatz the solutions of the KZ equation are constructed
from the quantum inhomogeneous spin chain. This fact enlightens the relationship between
the Gaudin magnet (8) and the KZ equation (10). Note that the Dunkl operator is also
constructed from the inhomogeneous transfer matrix [30, 31].
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We only write the solution of the KZ equation, V;®(x) = 0. The integral solution is
given by the following integral representation:

O(x) = f dexn(x, D0 exp ( — 4 Y wxf) (17
¥ i}

where y means the closed contour on the Riemann surface, and the functions yg and ¢ are
given by

n N
b0 =]‘[(ZI ;_a;) 10
w — &)

a N\

N " n N
xelr 8) = [Ty — 0 Tt ~ 1) T[] [t — 27
«

F=k a<f
The state [0} is the fully polarized spin state

0} =1th® - @I[tw

and the total spin of ¢(x) is J* = %N — n. The integration variable ¢, can be considered
as the spectral parameter of the quasi-particle (spinon).

The solution of the trigonometric KZ equation, ¥V, ¥(z) = 0, can be given by the integral
form

W(z) = f diyxr(h, 2)¥ (A, 2) (18)
14

where
n

N
w0 =[] (ZU + coth(re — z&-))o,:) 0)
k

o

N 7 n N
x1(z, 1) = [ JGsinh(z; — ze)* [ [ (sinhhe — Ag)™ [T [ [(sinh(re — 207" .
J<k a<p @ f

The total spin of the state W(z) is J* = 1N —n.

For the ferromagnetic case (n = ), the model is the same as the spinless case.
In this case wavefunctions ®(x) and W(z) reduce to the simple Jastrow-type functions,
I« — %) and [, . (sinh(z, — 2))*, respectively. Both of them are known as the
ground state wavefunctions for the original C3M model (1). One can also easily see the
fractiona) statistics.

The excited states for the Calogero model confined in the harmonic potential (5) can be
obtained from ®{x) [32]. We can write explicitly the creation operators C,, which satisfy
the commutation relation

[Hem, €] = 2nwCy . (19)
Such creation operators are defined by
C* = Z (S*(L+ aJX)")J.k a=0,x,7,z (20)
ik

where the operator valued & x N matrices L, X and 8~ are

. 8 ik P
o= el —— g LI R
ij laxj /13 + X; -xk( jk)
X =diag(ixy, ixz, ..., ixy)

8% = diag(oy,...,0p) a=x,¥2z
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and 8% = 1. Note that the commutation relation (19) is a subalgebra of the Wy, algebra,
and that the Hamiltonian Heyy and the creation cperator C, are identified with Wé and
WD, respectively. The wavefunctions CHCRz ... @ are also the eigenstates of (5).

Finally we comment on the symmetry of the system with inverse square interactions.
The Calogero-Sutherland—Moser spin system has interesting properties, one of which is
the Yangian symmetry [30]; the transfer matrix of this system has the rational R-matrix
structure. In [33] it has been shown that the Wess—Zuminc—Witten conformal field theory
provides a natural realization of the Yangian symmetry. In fact the Wi, symmetry is
given for the ¢SM spin system [34]; the Calogero-type and the Sutherland-type models are
unified as the W operators. In the Wi 4 picture the Sutherland-type system (4) can be
derived from the Calogero system (3}. While the Calogero-type is Wé] , the Sutherland-type

is written as WS, These W operators are defined recursively

L) _1_ s—1)
Wl = 2(n+5) [ijz‘ Wi ] 1)

i

This relation is quite intriguing, but we believe that this fact originates from the similarity
between the rational and the trigonometric KZ equation [35]. By setting x; = exp(2z;) in
(10) with (), we obtain the rational KZ equation,
P.
LA * gy Zpap 22)
aJCj gl Xj — Xk ij

where iy = 3 (= Pk + i)

The author would like to thank M Wadati for his keen interest in this work.
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